Clinical Evaluation of the Nelfinavir-Rifabutin Interaction in Patients with Tuberculosis and Human Immunodeficiency Virus Infection

Debra A. Benator, M.D., Marc H. Weiner, M.D., William J. Burman, M.D., Andrew A. Vernon, M.D., Zhen A. Zhao, Ph.D., Awal E. Khan, Ph.D., Brenda E. Jones, M.D., Laurie Sandman, R.N., M.P.H., Melissa Engle, Claudia Silva-Trigo, R.N., Poe H. Hsyu, Ph.D., Mark I. Becker, Pharm.D., and Charles A. Peloquin, Pharm.D., for the Tuberculosis Trials Consortium

Study Objective. To characterize the bidirectional interaction between twice-daily nelfinavir and twice-weekly rifabutin and isoniazid in patients with tuberculosis and human immunodeficiency virus (HIV) infection.

Design. Prospective cohort study.

Setting. Three clinical research centers.

Patients. Seven patients with HIV-related tuberculosis.

Intervention. Rifabutin 300 mg and isoniazid 15 mg/kg (maximum dose 900 mg) twice/week were administered for at least 2 weeks during the continuation phase of tuberculosis treatment. Antiretroviral therapy with nelfinavir 1250 mg twice/day and two nucleoside reverse transcriptase inhibitors was then added.

Measurements and Main Results. Patients underwent blood sampling for pharmacokinetic analysis during the continuation phase of tuberculosis therapy and after a median of 21 days after the addition of antiretroviral treatment. When rifabutin was coadministered with nelfinavir, its area under the concentration-time curve from 0–21 hours (AUC$_{0-21}$) increased 22% (geometric mean 5.01 µg•hr/ml [90% confidence interval (CI) 3.25–7.71] with nelfinavir vs 4.10 µg•hr/ml [90% CI 3.18–5.27] without nelfinavir; geometric mean ratio 1.22 [90% CI 0.78–1.92]). Also, the AUC$_{0-21}$ for the active metabolite, desacetylrifabutin, increased significantly (geometric mean ratio 3.46, 90% CI 1.84–6.47, p=0.009). In the presence of rifabutin, the pharmacokinetic parameters of nelfinavir and its principal metabolite M8 were similar to those of patients not taking rifabutin. No drug interaction between nelfinavir and isoniazid was detected.

Conclusions. Coadministration of rifabutin and isoniazid without dosage adjustment during twice-weekly tuberculosis therapy with nelfinavir-based antiretroviral therapy resulted in rifabutin exposures within the acceptable ranges for safety and efficacy. Therefore, this combination is an appropriate option for the simultaneous treatment of tuberculosis and HIV infection when tuberculosis therapy is given twice weekly.

Key Words: tuberculosis, human immunodeficiency virus, HIV, nelfinavir, rifabutin, isoniazid, drug interactions, cytochrome P450, pharmacokinetics.

(Pharmacotherapy 2007;27(6):793–800)

Rifamycins are the key drugs in the treatment of active disease due to *Mycobacterium tuberculosis* because they allow for a short course of tuberculosis therapy and because they reduce...
morbidity and mortality due to human immuno-
deficiency virus (HIV)–related tuberculosis.1,2
However, rifampin is a potent inducer of hepatic
microsomal enzymes, and it substantially reduces
concentrations of most HIV type 1 protease inhibitors.
Therefore, rifabutin, which is only about 40% as
potent an inducer as rifampin, is recommended
for patients who are taking an antiretroviral regi
men with a protease inhibitor, including nelfinavir.3 Despite this, rifabutin can substantially
reduce the plasma concentrations of nelfinavir.
Cytochrome P450 (CYP) 3A4 partly clears
rifabutin, unlike rifampin, and this isoenzyme
predominantly clears the active 25-desacetyl-
metabolite. Therefore, also unlike rifampin,
rifabutin is subject to bidirectional drug inter-
actions.3 Nelfinavir is a potent inhibitor of
CYP3A4 and, therefore, might increase exposure
to rifabutin and desacetylrifabutin. Elevated
concentrations of rifabutin and its metabolite are
associated with an increased frequency of adverse
drug reactions, including anterior uveitis and
thrombocytopenia.4

In healthy volunteers, rifabutin 150 mg/day did
not substantially affect the pharmacokinetics of
nelfinavir 1250 twice/day.5 However, the area
under the concentration-time curve (AUC) for
rifabutin increased by 71% compared with

rifabutin 300 mg dosed alone. The effect on the
25-O-desacetyl metabolite was dramatic, with a
11.2-fold increase in the AUC.

Although nelfinavir is no longer part of the
preferred regimens to treat HIV infection, it
remains an alternative for patients who cannot
receive nonnucleoside reverse transcriptase
inhibitors or ritonavir-boosted protease inhibitors.6
During pregnancy, nelfinavir is a recommended
protease inhibitor given the extensive pharma-
kinetic and clinical experience with this drug in
pregnant women and given the absence of
evidence for teratogenicity.7 Therefore, under-
standing the nelfinavir- rifabutin interaction
remains relevant.

Rifamycins result in concentration-dependent
mycobacterial killing. Therefore, low rifamycin
concentrations are highly undesirable.8,9 Because
of concerns about underdosing of rifabutin
during intermittent therapy, current guidelines
from the Centers for Disease Control and
Prevention (CDC) recommend rifabutin 300 mg
for twice-weekly tuberculosis therapy in patients
with CD4+ counts of 100 cells/mm3 or greater
who are receiving nelfinavir.2 To evaluate this
recommendation, we characterized the bidirec-
tional pharmacokinetic interactions between
nelfinavir and rifabutin in patients with HIV and
tuberculosis coinfection. In addition, we
determined pharmacokinetic parameters for
isoniazid in the absence and presence of
nelfinavir. Patients were also enrolled in the
Tuberculosis Trials Consortium (TBTC)–U.S.
Public Health Service Study 23, which was
designed as an observational trial to evaluate the
efficacy and tolerability of a standard rifabutin-
based regimen to treat HIV-related tuberculosis.10

Methods

Patients

The institutional review boards of the CDC and
the three participating sites approved this study.
Patients with HIV-related tuberculosis were
eligible for inclusion; all patients provided
written informed consent.

Exclusion criteria were severe anemia (hematocrit <
25%), pregnancy or breastfeeding, consump-
tion of grapefruit juice, use of a nonnucleoside
reverse transcriptase inhibitor, use of a second
protease inhibitor, or use of any drug specifically
contraindicated to nelfinavir or rifabutin or with
the potential to alter concentrations of these
drugs within the 5 days before or during periods
of pharmacokinetic monitoring.
Sample and Data Collection

Initial pharmacokinetic sampling occurred after rifabutin 300 mg and isoniazid 15 mg/kg (maximum dose 900 mg) were administered twice/week for at least 2 weeks during the continuation phase of tuberculosis treatment (months 3–6). Antiretroviral treatment with nelfinavir 1250 mg twice/day (given as five 250-mg tablets) and two nucleoside reverse transcriptase inhibitors was then added. The nucleoside reverse transcriptase inhibitors were zidovudine, lamivudine, stavudine, or didanosine in combinations suggested in guidelines from the U.S. Department of Health and Human Services. After a median of 21 days (inter quartile range 20–38 days), a second set of pharmacokinetic samples was obtained. Blood samples for analyses were collected just before the observed doses and 1, 3, 5, 7, 9, and 21 hours after rifabutin and isoniazid were administered. These times corresponded to 2, 4, 6, 8, 10, 12, and 24 hours after nelfinavir was given. Patients took rifabutin and isoniazid while fasting for 2 hours before and 1 hour after drug administration, and they took nelfinavir with a meal containing 22–32% fat.

All administered doses of tuberculosis therapy were directly observed. Sixty days after the last dose of the study drugs was given, all patients were interviewed by phone or in person, and their medical records were reviewed for evidence of adverse events.

Drug Analyses

Concentrations of nelfinavir and hydroxy-t-butylamide (M8, the active metabolite of nelfinavir) were compared with those of 10 HIV-infected patients receiving nelfinavir 1250 mg twice/day for 28 days without rifabutin. Validated high-performance liquid chromatographic assays were used to determine concentrations of isoniazid, rifabutin, and the 25-desacetyl metabolite of rifabutin. Assays were performed at the National Jewish Medical and Research Center in Denver, Colorado. Samples were measured by using a system consisting of a pump with a fixed-volume autosampler, and an ultraviolet detector (models P4000 HPLC, AS1000, UV2000, respectively; ThermoFinnegan, San Jose, CA), a computer (e series; Gateway, Inc., Irvine, CA), and a high-performance liquid chromatographic data-management system (ChromQuest; Thermo Fisher Scientific, Inc. Waltham, MA).

The plasma standard curve for isoniazid ranged from 0.5–20 µg/ml. The absolute recovery of isoniazid from plasma was 61%. The within-sample precision (percentage coefficient of variation) of validation quality control samples was 1–6%, and the overall validation precision across all standards was 6–10%.

The plasma standard curve for rifabutin ranged from 0.01–2 µg/ml. The absolute recovery of rifabutin from plasma was 100%. The within-sample precision (percentage coefficient of variation) of validation quality control samples was 3–4%, and the overall validation precision across all standards was 2–7%.

We observed no interference in the measurement of isoniazid or rifabutin with 90 commonly used drugs. Plasma drug concentrations of nelfinavir and its metabolite M8 were determined at PPD, Inc., Wilmington, NC, as previously reported. Assays for HIV loads (Versant HIV-1 RNA 3.0 assay [bDNA]; Bayer Diagnostics, Emeryville, CA) were conducted in the laboratory of Dr. Howard Gale at the Veterans Affairs Medical Center, Washington, D.C.

Statistical and Pharmacokinetic Analyses

Drug exposure was defined as the AUC from 0–21 hours (AUC0–21) for rifabutin and from 0–12 hours (AUC0–12) for nelfinavir and isoniazid. These AUCs were analyzed by using noncompartmental techniques (WinNonlin, version 4; Pharsight Corp., Mountain View, CA). Because rifabutin has an extended terminal elimination phase and because accurate calculations of half-life were not possible with our 21-hour sampling scheme, its half-life was not reported.

Because twice-weekly regimens are no longer recommended for HIV-positive patients with tuberculosis and a CD4+ count below 100 cells/mm3, we performed simulations of rifabutin 300 mg 3 times/week using WinNonlin. Nonparametric superposition was performed by using all of the available serum concentration data for rifabutin in the presence of nelfinavir simulated over 2 weeks.

Data analyses were performed by using SAS statistical software (SAS Institute Inc., Cary, NC). For binomial data, differences between groups were determined by using a χ² or Fisher exact test. Pharmacokinetic data were reported as arithmetic and geometric means with 90% confidence intervals (CIs), and paired data were compared by applying the t test. If a normal distribution was rejected on the basis of a
Shapiro-Wilk test or if variances of different groups were unequal and natural-log transformation improved the validity of the analyses, the t test was performed with natural log–transformed results. These natural log–transformed data were then back-transformed to the original scale to obtain the mean and 90% CI. Differences between groups were considered statistically significant if the p value was less than 0.05.

Results

Eight patients were enrolled in the study; one patient was excluded from the analysis because fluconazole was administered during pharmacokinetic sampling. Pharmacokinetics for isoniazid were omitted from another patient whose isoniazid concentrations were not detected after 1-hour sampling. Table 1 shows the demographic and laboratory data of the seven evaluable patients. Because nucleoside reverse transcriptase inhibitors are not known to interact with isoniazid or rifabutin, interactions described here were attributed to nelfinavir. Concentrations of rifabutin were somewhat higher in the presence of nelfinavir than in its absence. The geometric mean AUC\textsubscript{0–21} for rifabutin was 5.01 µg•hr/ml (90% CI 3.25–7.71) versus 4.10 µg•hr/ml (90% CI 3.18–5.27), and the geometric mean ratio was 1.22 (90% CI, 0.78–1.92) (Table 2, Figure 1). A significant interaction could not be excluded given the sample size.

If we were to conduct a post hoc analysis of the data using a 1-sample t test of the differences between paired observations and assuming a normal distribution, a sample of 18 would have been necessary to achieve 79% power with an α of 0.05 to detect a difference of 1.318 µg•hour/ml between the baseline mean AUC\textsubscript{0–21} of 4.295 µg•hour/ml for rifabutin and a second mean of 5.613 µg•hour/ml with a known standard deviation of 2.356.

The AUC\textsubscript{0–21} for the 25-desacetyl metabolite of rifabutin was significantly higher in the presence of nelfinavir than in its absence. Simulations of rifabutin 300 mg 3 times/week in the presence of nelfinavir for 2 weeks showed a median maximum concentration of 0.43 µg/ml, a 21-hour value of 0.12 mg/ml, and an AUC\textsubscript{0–21} of 5.41 µg•hour/ml for rifabutin.

Nelfinavir did not significantly affect serum concentrations of isoniazid (Table 2). In the presence of rifabutin, concentrations of nelfinavir and M8 were similar to those of HIV-infected patients receiving nelfinavir without rifabutin (Table 3). Median CD4+ T-cell counts rose from 94 cells/mm3 (interquartile range 59–145 cells/mm3) at baseline to 198 cells/mm3 (interquartile range 112–438 cells/mm3) during antiretroviral therapy, and HIV RNA content decreased from 5.40 log\textsubscript{10} copies/ml (interquartile range 5.03–5.70 copies/ml) to 2.84 log\textsubscript{10} copies/ml (interquartile range 2.19–3.21 copies/ml, p=0.02) at a median of 21 (interquartile range 20–38) days after the start of antiretroviral therapy.

All seven patients successfully completed tuberculosis therapy. No patient experienced tuberculosis treatment failure or had a relapse.

Toxicity

Two patients developed toxicity that was possibly attributable to tuberculosis therapy combined with antiretroviral therapy. In the first patient, aspartate aminotransferase (AST) levels were elevated (range 61–171 U/L) before antiretroviral therapy. This patient developed grade III transaminase elevations (AST level 197 U/L) 14 days after the addition of zidovudine, lamivudine, and nelfinavir to isoniazid and rifabutin 300 mg twice/week. Marked increases were observed in the patient’s exposure to rifabutin (AUC\textsubscript{0–21} change from 5.3 to 8.7

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race/ethnicity</td>
<td>No. (%) of Patients</td>
</tr>
<tr>
<td>Caucasian or Hispanic</td>
<td>6 (86)</td>
</tr>
<tr>
<td>African-American</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6 (86)</td>
</tr>
<tr>
<td>Female</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Hepatitis B surface antigen–positive</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis C serology–positive</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
<td>20.99 (20.25–24.47)</td>
</tr>
<tr>
<td>Karnofsky scorea</td>
<td>80 (80–80)</td>
</tr>
<tr>
<td>CD4+ cell countb</td>
<td>94 (32–159)</td>
</tr>
<tr>
<td>HIV-RNA viral load (log\textsubscript{10})b</td>
<td>5.44 (5.03–5.70)</td>
</tr>
<tr>
<td>Aspartate aminotransferase level (U/L)b</td>
<td>50 (38–74)</td>
</tr>
<tr>
<td>Bilirubin level (mg/dl)b</td>
<td>0.3 (0.2–0.4)</td>
</tr>
<tr>
<td>Albumin level (g/dl)b</td>
<td>3.3 (3.2–3.6)</td>
</tr>
<tr>
<td>Prothrombin time (sec)</td>
<td>12 (11–12)</td>
</tr>
</tbody>
</table>

aThe Karnofsky score measures functional performance (activities of daily living). On a scale of 0–100, lower scores indicate worse chances of survival for most serious illnesses.

bFrom first pharmacokinetic sample.
The second patient developed grade IV neutropenia (absolute neutrophil count of 394.4 cells/mm3) 2 months after the addition of stavudine, lamivudine, stavudine, or didanosine in combinations suggested by U.S.P.H.S. guidelines.

Our results suggested that the concentrations of rifabutin were adequate and reasonably well tolerated when rifabutin 300 mg was coadministered twice weekly with nelfinavir 1250 twice/day. A formal therapeutic window has not been defined for rifabutin in the treatment of tuberculosis. However, in one study, below-normal plasma concentrations were associated with treatment failure or relapse and with

![Figure 1. Mean ± SD rifabutin (A) and desacetylrifabutin (B) plasma concentrations over time in the absence (triangles) and presence (diamonds) of nelfinavir.](image-url)
acquired rifamycin resistance among patients with HIV infection and tuberculosis who receive twice-weekly tuberculosis therapy. In those patients, the AUC$_{0-24}$ for rifabutin was less than 4.5 µg•hour/ml in five (83%) of six patients with acquired rifamycin-resistant treatment failure or relapse. All had advanced acquired immunodeficiency syndrome with CD4$^+$ counts of less 100 cells/mm3 compared with 33 (35%) of 94 subjects without acquired rifamycin resistance ($p=0.03$, Fisher exact test). In our study, the AUC$_{0-21}$ for rifabutin was greater than 4.5 µg•hour/ml in six (86%) of seven patients receiving rifabutin and nelfinavir-based antiretroviral therapy, whereas three (43%) of seven had rifabutin concentrations greater than this threshold in the absence of nelfinavir.

The AUC for the desacetylrifabutin metabolite is normally about 10% that of the parent compound, with similar antimycobacterial activity. However, its contribution to toxicity is not well understood. Whereas CYP3A4 only partially metabolizes rifabutin, it predominantly metabolizes desacetyl metabolite; therefore, CYP3A inhibition increases levels of this metabolite more than it raises levels of rifabutin. At baseline, the mean AUC$_{0-21}$ for desacetylrifabutin was 14% of the AUC$_{0-21}$ for rifabutin. However, with nelfinavir-induced inhibition of CYP450, desacetylrifabutin exposure increased 3.5-fold and was 39% of the AUC$_{0-21}$ for rifabutin. One patient who developed hepatotoxicity after the addition of antiretroviral therapy had the highest concentrations of both rifabutin and the desacetyl metabolite in this study. However, preliminary evaluation of toxicity data from the pharmacokinetic substudy of the Tuberculosis Trials Consortium Study 23 did not reveal an association of neutropenia or hepatotoxicity with rifabutin exposure.

Furthermore, available data suggest that rifamycin hepatotoxicity is idiosyncratic. The data confirm the provisional CDC guideline that dosage adjustment is unnecessary when rifabutin is administered twice weekly with nelfinavir-based antiretroviral therapy. Compared with daily dosing of rifabutin, twice-weekly dosing had a reduced effect on steady-state exposures and, thus, may minimize the risk of thrombocytopenia, neutropenia, and uveitis. Although twice-weekly tuberculosis therapy is no longer recommended for patients with CD4$^+$ counts less than 100 cells/mm3, it remains an important option for directly observed therapy in patients with cell counts higher than this. Furthermore, the simulations of rifabutin 300 mg given 3 times/week in the presence of nelfinavir predicted rifabutin serum concentrations and AUC$_{0-21}$ values within ranges that are likely to be safe and effective.

In the presence of rifabutin 300 mg and isoniazid administered twice weekly, concentrations of nelfinavir were similar to those achieved in historical patients infected with HIV who received nelfinavir without rifabutin. This observation is consistent with findings from studies in which CYP inducers other than rifampin did not substantially affect concentrations of nelfinavir. Therapeutic trough nelfinavir concentrations (minimum concentrations > 0.8 µg/ml for wild-type HIV) were present in only three of our six patients. However, it is difficult to attribute this finding to the presence of rifabutin because similar findings were demonstrated in the absence of CYP inducers in the clinical setting. Of note, a new formulation of nelfinavir, a 625-mg tablet, is available. This formulation increases bioavail-

Table 3. Comparison of Nelfinavir and M8 Metabolite Pharmacokinetic Parameters in the Presence and Absence of Rifabutin

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nelfinavir</th>
<th>p Value</th>
<th>M8 Metabolite</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC$_{0-12}$ (µg•hr/ml)</td>
<td></td>
<td>0.81</td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>With rifabutin</td>
<td>28.33 ± 9.87</td>
<td></td>
<td>8.73 ± 5.33</td>
<td></td>
</tr>
<tr>
<td>Without rifabutin</td>
<td>26.4 ± 7.9</td>
<td></td>
<td>11.9 ± 5.5</td>
<td></td>
</tr>
<tr>
<td>C_{max} (µg/ml)</td>
<td></td>
<td>0.97</td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>With rifabutin</td>
<td>3.93 ± 1.08</td>
<td></td>
<td>1.50 ± 0.84</td>
<td></td>
</tr>
<tr>
<td>Without rifabutin</td>
<td>3.99 ± 0.78</td>
<td></td>
<td>1.85 ± 0.60</td>
<td></td>
</tr>
<tr>
<td>C_{min} (µg/ml)a</td>
<td></td>
<td>0.69</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>With rifabutin</td>
<td>0.70 ± 0.74</td>
<td></td>
<td>0.15 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>Without rifabutin</td>
<td>0.69 ± 0.42</td>
<td></td>
<td>0.30 ± 0.23</td>
<td></td>
</tr>
</tbody>
</table>

Data are arithmetic mean ± SD.

aMeasured in the afternoon or evening.
NELFINAVIR-RIFABUTIN INTERACTION IN HIV-RELATED TUBERCULOSIS Benator et al

ability (24% increase in the AUC) compared with the 250-mg tablet used in this study. 11

Hydroxy-t-butylamide (M8), the major oxidative metabolite of nelfinavir, has HIV activity comparable to that of the parent compound in vitro, and it may account for some of the clinical efficacy of nelfinavir. 27 The low minimum concentration of M8 in this study (0.15 ± 0.12 µg/ml) was not unexpected (minimum concentration in historical subjects 0.30 ± 0.23 µg/ml, p=0.06). Although transformation of nelfinavir to M8 appears to involve solely CYP2C19, CYP3A4 metabolizes M8, making it more susceptible than nelfinavir to induction by rifabutin. 28 However, low concentrations of M8 in the presence of CYP3A4 inducers do not substantially affect overall concentrations of nelfinavir plus M8, and they are not expected to be clinically significant. 27, 28

This pharmacokinetic study had several important limitations. First, the small sample size limited the power of the findings. Second, we did not definitively establish or exclude a significant increase in the concentrations of rifabutin in the presence of nelfinavir, as the 90% CIs for the ratio of geometric means for rifabutin AUC were outside the equivalence range standard of 80–125%. Third, our 21-hour sampling scheme was insufficient to accurately determine some pharmacokinetic parameters, such as the half-life of rifabutin. Finally, the follow-up of 2 months beyond the last pharmacokinetic sampling was too short to enable us to evaluate the durability of nelfinavir-based antiretroviral therapy.

Conclusion

For patients with HIV infection and tuberculosis, standard dosing of twice-weekly rifabutin therapy with daily nelfinavir-based antiretroviral therapy achieved acceptable drug exposures of rifabutin. Our findings support current recommendations to provide rifabutin 150 mg for daily treatment but 300 mg for twice-weekly treatment. Further clinical studies are needed to identify optimally safe, potent, and durable antiretroviral therapies for patients with HIV infection who are receiving treatment for tuberculosis.

Acknowledgments

We are grateful to Drs. Elsa Villarino, Rick O’Brien, and Kenneth G. Castro for their support and leadership in the CDC.

References

